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Abstract. The differential calculus on the quantum Heisenberg group is constructed. The
duality between the quantum Heisenberg group and algebra is proved. It is shown that the
calculus considered can be obtained from 3D calculus onSUµ(2) by contraction.

1. Introduction

The one-dimensional deformed Heisenberg group and algebra were investigated in [1, 2]. In
this paper, using Woronowicz’s theory [3], we construct the bicovariant differential calculus
on the deformed one-dimensional Heisenberg group and we describe the structure of its
quantum Lie algebra. Then we prove that our quantum Lie algebra is equivalent to the one-
dimensional deformed Heisenberg algebra. We also show that our calculus can be obtained
by contraction from Woronowicz’s 3D calculus onSUµ(2) in spite of the fact that the latter
is not bicovariant.

2. The differential calculus

The quantum groupH(1)q is a matrix quantum group̀a la Woronowicz [4]

T =
( 1 α β

0 1 δ

0 0 1

)
(1)

where the matrix elementsα, β, δ generate the algebraA and satisfy the following
relations [1]:

[α, β] = iλα

[δ, β] = iλδ

[α, δ] = 0

(2)

λ being a real parameter.
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The co-product, co-unit and antipode are given by

1(α) = I ⊗ α + α ⊗ I

1(β) = I ⊗ β + β ⊗ I + α ⊗ δ

1(δ) = I ⊗ δ + δ ⊗ I

S(α) = −α

S(β) = −β + αδ

S(δ) = −δ

ε(α) = ε(β) = ε(δ) = 0.

(3)

The main ingredient of the Woronowicz theory is the choice of a right ideal in kerε, which
is invariant under the adjoint action of the group. The adjoint action is defined as follows:

ad(a) =
∑

k

bk ⊗ S(ak)ck (4)

where

(1 ⊗ I ) ◦ 1(a) =
∑

k

ak ⊗ bk ⊗ ck.

One can prove the following:

Theorem 1.Let R ⊂ kerε be the right ideal generated by the following elements:α2, δ2,
βα, βδ, αδ, β2 − 2iλβ. Then

(i) R is ad-invariant, ad(R) ⊂ R ⊗ A;
(ii) ker ε/R is spanned by the following elements:α, β, δ.

Having established the structure ofR we follow closely the Woronowicz construction.
The basis of the space of the left-invariant 1-forms consists of the following elements:

ωα ≡ πr−1(I ⊗ α) = dα

ωβ ≡ πr−1(I ⊗ β) = dβ − α dδ

ωδ ≡ πr−1(I ⊗ δ) = dδ

(5)

where the mappingr−1 is given by

r−1(a ⊗ b) = (a ⊗ I )(S ⊗ I )1(b) a, b ∈ A

and the mappingπ is given by

π
(∑

k

ak ⊗ bk

)
=

∑
k

ak dbk

where
∑

k ak ⊗ bk ∈ A ⊗ A is an element such that∑
k

akbk = 0.
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The next step is to find the commutation rules between the invariant forms and generators
of A. The detailed calculations result in the following formulae:

[α, ωα] = 0

[δ, ωα] = 0

[β, ωα] = −iλωα

[α, ωδ] = 0

[δ, ωδ] = 0

[β, ωδ] = −iλωδ

[α, ωβ ] = 0

[δ, ωβ ] = 0

[β, ωβ ] = −2iλωβ.

(6)

Then, following Woronowicz’s paper [3], we can construct the right-invariant forms

ηα = ωα

ηδ = ωδ

ηβ = ωβ − ωαδ + ωδα.

(7)

This concludes the description of the bimodule0 of 1-forms onH(1)q . The external algebra
can now be constructed as follows [3]. On0⊗2 we define a bimodule homomorphismσ
such that

σ(ω ⊗A η) = η ⊗A ω (8)

for any left-invariantω ∈ 0 and any right-invariantη ∈ 0. Then by definition

0∧2 = 0⊗2

ker(I − σ)
. (9)

Equations (7)–(9) allow us to calculate the external product of left-invariant 1-forms. The
result reads

ωβ ∧ ωα = −ωα ∧ ωβ

ωβ ∧ ωδ = −ωδ ∧ ωβ

ωβ ∧ ωβ = 0

ωα ∧ ωα = 0

ωδ ∧ ωδ = 0

ωα ∧ ωδ = −ωδ ∧ ωα.

(10)

To complete the external calculus, we derive the Cartan–Maurer equations

dωα = 0

dωδ = 0

dωβ = −ωα ∧ ωδ.

(11)

3. Quantum Lie algebra

In order to obtain the counterpart of the classical Lie algebra, we introduce the counterpart
of the left-invariant vector fields. They are defined by the formula

da = (χα ∗ a)ωα + (χβ ∗ a)ωβ + (χδ ∗ a)ωδ. (12)
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In order to find the quantum Lie algebra, we apply the external derivative to both sides
of (12). We use d2a = 0 on the left-hand side and calculate the right-hand side using (11)
and again (12). Nullifying the coefficients in front of basis elements of0∧2, we find the
quantum Lie algebra

[χα, χβ ] = 0

[χδ, χβ ] = 0

[χαχδ] = χβ.

(13)

From the Woronowicz theory, it follows that the co-product of the functionalϕi (ϕi ≡
χα, χβ, χδ) can be written in the form

1ϕi =
∑

j

ϕj ⊗ fji + I ⊗ ϕi (14)

wherefji are the functionals entering in the commutation rules between the left-invariant
forms and elements ofA

ωja =
∑

i

(fji ∗ a)ωi. (15)

Then, it follows from commutation rules (6) that the co-product for our functionals can be
written in the following form:

1χα = χα ⊗ fα + I ⊗ χα

1χβ = χβ ⊗ fβ + I ⊗ χβ

1χδ = χδ ⊗ fδ + I ⊗ χδ.

(16)

Using the fact that1fi = fi ⊗ fi (i = α, β, δ) [3] and (6) and (15), we can calculate the
functionalsfi . After some calculations we obtain

fα = (I − 2iλχβ)
1
2

fβ = I − 2iλχβ

fδ = (I − 2iλχβ)
1
2 .

(17)

Now it is easy to see that the substitution

χδ = B0

χβ = B1

χα = B2

(18)

reproduces the structure of the Hopf algebra generated by the infinitesimal generators
(obtained by contraction procedure) of the quantum matrix pseudogroupH(1)q , which
was described in [1]. This proves the duality between the quantum Heisenberg group and
algebra.

4. Contraction from SUµ(2)†

We shall show how our calculus can be obtained by contraction from 3D left-covariant
calculus onSUµ(2) constructed by Woronowicz ([5]). TheSUµ(2) quantum group is a
matrix quantum group

X =
(

σ −µρ∗

ρ σ ∗

)
(19)

† The content of this section was suggested by one of the referees. We are grateful for his remarks.
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whereµ is a deformation parameter while the generators obey the following algebraic rules

σ ∗σ + ρ∗ρ = I

σσ ∗ + µ2ρρ∗ = I

ρρ∗ = ρ∗ρ
µρσ = σρ

µρ∗σ = σρ∗.

(20)

The above rules can be solved by putting

σ = eiϕτ (21)

and imposing

τ 2 + ρ∗ρ = I

eiϕρ = µρeiϕ

τ ∗ = τ ϕ∗ = ϕ.

(22)

From SUµ(2) we can obtain by contraction the Heisenberg group. To this end we define
new variablesα, β, δ by

ρ = δ + iα√
2R

ρ∗ = δ − iα√
2R

ϕ = 1

R2

(
β − αδ

2

)
µ = eλ/R2

(23)

and putR → ∞. It is easy to check that as a result the Heisenberg group emerges.
Let us consider the 3D calculus onSUµ(2) described in [5]. The left-invariant forms

ω0, ω1 andω2 are defined as follows:

ω0 = ρ∗ dσ ∗ − µσ ∗ dρ∗

ω1 = σ ∗ dσ + ρ∗ dρ

ω2 = ρ dσ − µ−1σ dρ.

(24)

It is straightforward to check that

lim
R→∞

Rω0 = i dα − dδ√
2

lim
R→∞

Rω2 = i dα + dδ√
2

lim
R→∞

R2ω1 = i(dβ − α dδ).

(25)

Moreover, under this limit the whole structure described in [5] is transformed into the
formulae given in section 2.

Although the above reasoning shows that our calculus results from the contraction of
the Woronowicz one it seems to be interesting to find also our idealR (theorem 1) from
that of Woronowicz. The latter is generated by the following six elements:

ρ2 ρ∗2 ρρ∗

(σ − I )ρ (σ − I )ρ∗

σ ∗ + µ2σ − (1 + µ2)I.

(26)

First, by taking the limitR → ∞ of R2(ρ2, ρ∗2, ρρ∗) we infer thatα2, δ2 andαδ belong
to R.
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Let us further note thatσ has the following expansion

σ = I + i

R2

(
β − αδ

2

)
− δ2 + α2

4R2
+ O

(
1

R4

)
. (27)

From (27) we conclude by taking the limits limR→∞ R3(σ − I )ρ, limR→∞ R3(σ − I )ρ∗ and
skipping terms which are already known to belong toR, that βα ∈ R, βδ ∈ R. Finally,
let us note that, due toρρ∗ ∈ R,

σ = eiϕ
√

1 − ρρ∗ '
R

eiϕ. (28)

We can now use (28) and expand the last generator (26) up to the order 1/R4 to find that
β2 − 2iλβ ∈ R (again neglecting terms which have already been shown to belong toR).

Let us note that the similar contraction procedure can be applied to 4D+ calculus on
SUµ(2) [6] in order to obtain a bicovariant calculus on deformedE(2) described in [7].
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